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Appendix A Data

A.1 GDP SPF

The Survey of Professional Forecasters includes expectations for real GDP in levels and

growth rates. We decided not to use the official release for the expectation of real GDP

in levels, because it is not adjusted for changes in the basis year, data revisions and in

the seasonal adjustment mechanism.

Instead, we computed the one-year ahead SPF expectation for the growth rates and

we used it jointly with the latest vintage of data available for real GDP to compute an

adjusted prediction for the levels.
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Appendix B Stylised model – output gap and RE

In this appendix we show that a version of the quarterly model without idiosyncratic

trends is compatible with the solution of a New Keynesian model with rational expecta-

tions.1

In the quarterly model, we assume that

πt = τπt + γπ,0ψ
gap
t + γπ,1ψ

gap
t−1 + δπ,0ψ

epc
t + δπ,1ψ

epc
t−1 , (1)

while the output gap and the energy price cycles are AR(2) process, that we can write

as:

ψgapt = ρgap1 ψgapt−1 + ρgap2 ψgapt−2 + vgapt , (2)

ψepct = ρepc1 ψepct−1 + ρepc2 ψepct−2 + vepct . (3)

Rational expectations agents would form model-consistent expectations about inflation

as

Etπt+1 = Et
[
τπt+1 + γπ,0ψ

gap
t+1 + γπ,1ψ

gap
t + δπ,0ψ

epc
t+1 + δπ,1ψ

epc
t

]
= τπt + γπ,0(ρgap1 ψgapt + ρgap2 ψgapt−1) + γπ,1ψ

gap
t + δπ,0(ρeps1 ψepst + ρeps2 ψepst−1) + δπ,1ψ

eps
t

= τπt + γexp,1ψ
gap
t + γexp,2ψ

gap
t−1 + δexp,1ψ

epc
t + δexp,2ψ

epc
t−1 .

This shows that if the output gap is an AR(2) process, then rational expectations are a

moving average of output gap and its first lag.
1See ? for additional details on this point.
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Let now consider a New Keynesian Phillips Curve connecting the cyclical components

of output, inflation, and inflation expectations, of the form

π̂gapt = βEt [π̂gapt+1] + κŷgapt , (4)

where hats indicate deviations from trends and εt is an i.i.d. white noise disturbance.

Substituting in the PC equation, one obtains:

π̂gapt = β(γexp,1ψgapt + γexp,2ψ
gap
t−1 + δexp,1ψ

epc
t + δexp,2ψ

epc
t−1) + κψgapt + εt ,

= (βγexp,1 + κ)ψgapt + βγexp,2ψ
gap
t−1 + βδexp,1ψ

epc
t + βδexp,2ψ

eps
t−1 ,

which is compatible with the assumed equilibrium dynamic of π̂gapt .
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Appendix C Adaptive Metropolis-Within-Gibbs

C.1 Algorithm

The estimation algorithm is an improved version of the Metropolis-Within-Gibbs in ?

that employs the Single Component Adaptive Metropolis proposed in ?.

This hybrid algorithm is structured in two blocks: (1) a Single Component Adaptive

Metropolis (?) step for the estimation of the state-space parameters, (2) a Gibbs sampler

(??) to draw the unobserved states conditional on the model parameters. Since we

have non-stationary unobserved states, we use the Kalman filter with exact diffuse initial

conditions (??) to compute the log-likelihood of the model. Finally, we used the priors

in ?.

Algorithm: Adaptive Metropolis-Within-Gibbs

Initialisation

LetK := {1, . . . , nk} and denote as P(K) a function that returns a random permutation

of K (uniformly taken from the full set of permutations of K). Let also θ0 be a nk

dimensional vector corresponding to the initial value for the Metropolis parameters.

This vector is associated to a high posterior mass.

Single component adaptive metropolis

let m = 1

for j = 1, . . . , 10000

let Sj = P(K)

for each k in Sj
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1. Adaptation: Update the standard deviation of the proposal distribution

σk,j =


1 if j ≤ 10,

exp
(
αk,j−1 − 0.44

)
σk,j−1 otherwise,

where αk,j−1 is the acceptance rate for the iteration j − 1, for the parameter

at position Sk,j. Besides, 44% is the standard target acceptance rate for single

component Metropolis algorithms.

2. New candidate: Generate a candidate vector of parameters θ ∗
m such that

θ ∗
l,m =


θl,m−1 if l 6= k,

θ
iid∼ N

(
θl,m−1, σk,j

)
otherwise,

for l = 1, . . . , nk.

3. Accept-reject: Set

θm =


θ ∗
m accept with probability ηm,

θm−1 reject with probability 1− ηm,

where

ηm := min

1,
p
[
Y | f(θ ∗

m)−1
]
p
[
f(θ ∗

m)−1
]
J(θ ∗

m)

p
[
Y | f(θm−1)−1

]
p
[
f(θm−1)−1

]
J
[
θm−1

]
 ,

f and J are defined below.

4. Increase counter: Increase m by one.

Gibbs sampling
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For j > 5000 (burn-in period), use the univariate approach for multivariate time series of

? to the simulation smoother proposed in ? to sample the unobserved states, conditional

on the parameters. In doing so, we follow the refinement proposed in ?.

Burn-in period

Discard the output of the first j = 1, . . . , 5000 iterations.

Jacobian

As in ? most parameters are bounded in their support (e.g. the variance parameters

must be larger than zero). In order to deal with this complexity, this manuscript trans-

forms the bounded parameters (Θ) so that the support of the transformed parameters

(θ) is unbounded. Indeed, the Adaptive Metropolis-Within-Gibbs draws the model para-

meters in the unbounded space. At a generic iteration j, the following transformations

have been applied to a generic parameter i with a Normal, Inverse-Gamma or Uniform

prior:

θNi,j = ΘN
i,j

θIGi,j = ln(ΘIG
i,j − ai)

θUi,j = ln
(

ΘU
i,j − ai

bi −ΘU
i,j

)
,

where ai and bi are the lower and the upper bounds for the i-th parameter. These

transformations are functions f(Θ) = θ, with inverses f(θ)−1 = Θ given by:

ΘN
i,j = θNi,j

ΘIG
i,j = exp(θIGi,j ) + ai

ΘU
i,j =

ai + bi exp(θ Ui,j)
1 + exp(θ Ui,j)

.
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These transformations must be taken into account when evaluating the natural logarithm

of the prior densities by adding the Jacobians of the transformations of the variables:

ln
(
dΘN

i,j

dθNi,j

)
= 0

ln
(
dΘIG

i,j

dθIGi,j

)
= θIGi,j

ln
(
dΘU

i,j

dθUi,j

)
= ln(bi − ai) + θUi,j − 2 ln(1 + exp(θUi,j)).
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Appendix D Additional Quarterly Results
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Figure 1: Top: Decomposition of the cycle of CPI inflation into common (in blue and red) and inde-
pendent (in yellow) components, as estimated by the model in ?. Bottom: Trend of CPI inflation (in
blue), with relative coverage intervals at 68% coverage (dark shade) and 90% coverage (light shade), as
estimated by the model in ?.

9



Appendix E Additional Real-Time Results
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Figure 2: The chart reports the one quarter ahead, real time forecasts of Real GDP from the two
models and compares them to the outturn. The out-of-sample evaluation starts in Jan-2005 and ends in
Sept-2020.

Table 1: The first two rows of this table report the standard deviation of the output gap and potential
output computed across vintages for each reference month and then averaged across reference months.
The last two columns report the maximum absolute value of revisions computed for each reference month
and then averaged across reference months.

Output Gap Potential Output
Undisciplined Tracking Undisciplined Tracking

Mean of std dev 0.54 0.61 6.79 8.33
Mean of std dev (until 2005) 0.5 0.5 5.06 7.28
Mean of max revision 0.91 1.37 16.38 15.09
Mean of max revision (until 2005) 0.46 1.13 9.10 10.93
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Figure 3: The chart reports the one month ahead, real time forecasts of inflation from the two models
and compares them to the outturn. The out-of-sample evaluation starts in Jan-2005 and ends in Sept-
2020.
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Figure 4: The chart compares the output gap estimates from the two models computed using the final
(09/30/2020) data vintage from the out-of-sample forecasting exercise.
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