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Abstract

We develop a medium-size semi-structural time series model of inflation dynamics
that is consistent with the view – often expressed by central banks – that three com-
ponents are important: a trend anchored by long-run expectations, a Phillips curve and
temporary fluctuations in energy prices. We find that a stable long-term inflation trend
and a well identified steep Phillips curve are consistent with the data, but they imply
potential output declining since the new millennium and energy prices affecting head-
line inflation not only via the Phillips curve but also via an independent expectational
channel. A high-frequency energy price cycle can be related to global factors affecting
the commodity market, and often overpowers the Phillips curve thereby explaining the
inflation puzzles of the last ten years.
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Inflation is characterized by an underlying trend that has been essentially con-

stant since the mid-1990s; [. . . ]. Theory and evidence suggest that this trend is

strongly influenced by inflation expectations that, in turn, depend on monetary

policy. In particular, the remarkable stability of various measures of expected

inflation in recent years presumably represents the fruits of the Federal Reserve’s

sustained effort since the early 1980s to bring down and stabilize inflation at a low

level. The anchoring of inflation expectations [. . . ] does not, however, prevent

actual inflation from fluctuating from year to year in response to the temporary

influence of movements in energy prices and other disturbances. In addition,

inflation will tend to run above or below its underlying trend to the extent that

resource utilization – which may serve as an indicator of firms’ marginal costs –

is persistently high or low.

Yellen (2016), ‘Macroeconomic Research After the Crisis’

Speech for the 60th Boston Fed Conference

The quote by Janet Yellen reflects a view, widely shared by policy makers and cent-

ral bankers, which maintains that three components matter for inflation dynamics: trend-

expectations, oil prices, and the degree of resource utilisation in the economy. Similarly,

most macroeconomic modelling is based on these three core ideas: some measure of slack

affects short term fluctuations of inflation via a Phillips curve; monetary policy, via expect-

ations, shapes its long run trend; and oil price and other idiosyncratic shocks explain the

volatile component of headline inflation. While models that incorporate these ideas use a

variety of different auxiliary assumptions (for example on the nature of expectations, the

functional form of key equations, and the channels of propagation of the shocks) these three

components remain the building blocks of a shared narrative. In this paper, we call this

broadly and loosely defined understanding of inflation dynamics the ‘Fed’s view’.

Recent empirical evidence has challenged this view. Indeed, the literature presents a

wide range of contrasting findings, including on the existence, stability, and steepness of the

slope of the Phillips curve, and regarding the degree of anchoring of inflation expectations.1

1A survey of the extensive empirical literature on the PC is beyond the scope of this paper. For a
recent survey of the New Keynesian Phillips curve focussing on univariate limited-information methods,
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First, many studies have found the Phillips curve to be unstable, hard to identify, and

weak or disappearing in recent samples (see results and discussions in IMF, 2013, Ball and

Mazumder, 2011, Blanchard et al., 2015 and McLeay and Tenreyro, 2018). Second, Phillips

curve based forecasting models have been shown to perform poorly with respect to naive

benchmarks, pointing to the irrelevance of slack measures for explaining inflation dynamics

(see, Atkeson and Ohanian, 2001, Stock and Watson, 2007, 2009, and also Dotsey et al., 2011,

Cecchetti et al., 2017, and Forbes et al., 2018 for recent evidence and relevant discussion).

Third, a small but increasingly important literature has challenged the idea that expectations

are fully anchored and forward-looking. For example, papers have connected the ‘missing

disinflation puzzle’ of the post-2008 crisis period to the partial disanchoring of consumers’

inflation expectations that, in turn, can be accounted for by the evolution of oil prices (see

Coibion and Gorodnichenko, 2015, and Coibion et al., 2017).

This paper revisits some of the evidence on the reduced form Phillips curve, in the spirit

of Phillips (1958), by assessing the Fed’s view of inflation dynamics through the lens of a

stylised statistical model that is informed by economic theory and incorporates economic

expectations while allowing for deviations from perfect information and full rationality. Our

modelling strategy can be defined as ‘semi-structural’ since it incorporates minimal identi-

fying assumptions from a general class of economic models, but lets the data speak on key

aspects, such as expectation formation, the nature of the Phillips curve, and the role of

oil prices. In this sense it occupies the middle ground between a fully specified Dynamic

Stochastic General Equilibrium (DSGE) model and a Vector Auto Regressive (VAR) model.

Our specification in reduced form is compatible with and nests several potentially differ-

ent forward- and backward-looking structural Phillips curve models, including the standard

New-Keynesian Phillips curve (NKPC), in which inflation is a purely forward-looking pro-

cess, driven by expectations of future real economic activity. Moreover, the model allows

survey data on agents’ expectations on inflation to depart from the full-information rational

see Mavroeidis et al. (2014) For a review of results using full-information methods to estimate dynamic
stochastic general equilibrium (DSGE) models, see An and Schorfheide (2007). Nakamura and Steinsson
(2013) review the use of microeconomic data to study price dynamics. Coibion et al. (2017) discuss the
incorporation of survey data on inflation expectations in models of inflation dynamics. Other surveys,
providing complementary approaches, include Henry and Pagan (2004), Ólafsson (2006), Rudd and Whelan
(2007), Nason and Smith (2008), Gordon (2011), and Tsoukis et al. (2011).
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expectations benchmark without imposing any specific form of information frictions. We

do not require either of the two surveys to be an efficient and unbiased predictor of future

inflation and allow for temporary and permanent deviations from a rational forecast, poten-

tially capturing measurement and observational errors, as well as a time-dependent bias in

inflation expectations.

A key feature of the approach is the modelling of oil prices and the different channels

through which energy prices can affect inflation. One way is through production marginal

costs and the Phillips curve – oil prices can affect the business cycle component and hence co-

determine the output gap.2 Furthermore, in the model, oil disturbances can affect headline

prices directly via energy services, which are part of the consumption basket, but also po-

tentially via expectation formation, in line with the findings of Coibion and Gorodnichenko

(2015). These two channels are captured by studying the differential impact of a second

cycle, that we label ‘energy price cycle’, on headline and core inflation. The energy price

cycle captures the potential common dynamics between oil prices, inflation expectations,

and inflation but it does not affect the domestic output gap and the real variables.3

In an extension of the model which includes proxies of global economic activity we analyse

whether the energy price cycle reflects global demand and the commodity price cycle. Our

results suggest that the energy price cycle is associated with oil supply shocks and financial

shocks in the commodity markets rather than global demand.

Inflation is modelled as being driven by three components: (i) long term inflation ex-

pectations; (ii) a stationary stochastic cycle, which captures multivariate and lagged com-

monalities in real, nominal (including energy prices) and labour market variables at business

cycle frequencies. This cycle connects the output gap to prices and their expectations via

a Phillips curve relationship and to unemployment via the Okun’s law; (iii) a stationary

stochastic cycle capturing the common dynamics between oil prices, inflation expectations,
2A large and important literature has analysed the connection between demand and supply oil shocks and

the business cycles (see, for example, Baumeister and Kilian, 2016, Hamilton, 2013, Kilian and Vigfusson,
2017).

3It is important to stress that our assumption of an energy price cycle orthogonal to the business cycle
and not affecting the real variables should not be seen as literally present in the data structure. It is a
convenient statistical device which helps teasing out components in the price dynamics, at higher frequencies
than those of the standard business cycle, and that can have weak or negligible impact on the US output
gap and labour market.
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and CPI inflation but not affecting real variables. The model also identifies other key eco-

nomic objects such as output potential, trend employment, and equilibrium unemployment,

in the form of unit root trends.

Results suggest that the Phillips curve is alive and well and has been fairly stable since

the early 1980s.4 Importantly, our cycle decomposition shows that the business cycle is

not always the dominant component. Large oil price fluctuations can move prices away

from the real-nominal relationship both by directly impacting energy services prices and by

shifting consumers’ expectations away from the rational forecast – ‘disanchoring’ them – and

hence inducing expectation driven fluctuations in prices. This result confirms the intuition

of Coibion and Gorodnichenko (2015). We provide confirmation of the importance of using

expectational data to identify both trend inflation and the Phillips curve, while dealing with

disturbances to expectations that, albeit reflected in inflation, are unrelated to real variables

and fundamentals. From a policy perspective, the stable inflation trend is an indication of

the Fed’s success in anchoring expectations. However, our results also point to the challenges

that policymakers have to overcome in guiding expectations and stabilising the economy in

the presence of large energy price disturbances.

There are several by-products of our analysis: we obtain a model-consistent estimate

of the output gap and potential output; we also assess the stability of Okun’s law and

the quality of core inflation as an indicator of underlying inflation. Indeed, our approach

generates an indicator of cyclical inflation which is clean not only from the direct effect of

oil prices, as is the case for core inflation, but also from their indirect effects.

The paper starts with a brief discussion of our methodology and related literature, in

the remainder of this section. In section 2 we then introduce a stylised model of inflation

dynamics which provides the intuition for our approach. In section 3 and 4 we specify the

empirical model while in section 5 and 6 we discuss empirical results. In section 7 we present

an out-of-sample forecasting evaluation and the last section concludes.
4While we observe that a fixed parameter model is able to capture a stable Phillips curve from the 1980s,

it is possible that time-variation in the parameters or stochastic volatility may be important over a longer
sample (see Stock and Watson, 2007; Mertens and Nason, 2017). We do not explore this possibility in this
paper. Indeed, estimation uncertainty is likely to obfuscate all gains coming from a more sophisticated
model.
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Contribution and Related Literature. From the statistical point of view, the model

has a number of attractive features: it does not rely on arbitrary preliminary detrending of

the data which may create distortions, it contains a rich lag structure allowing us to capture

dynamic heterogeneity amongst variables, it allows us to perform conjunctural analysis and

historical decompositions of variables into cyclical and trend components, and it is sufficiently

efficient and parsimonious to be used as a forecasting tool. The unit root trend common to

inflation and inflation forecasts can be related to agents’ long-term expectations, under the

assumption that the ‘law of iterated expectations’ holds (see Beveridge and Nelson, 1981

and Mertens, 2016). In fact, the impact of all transitory components has to be zero in the

long run.5

Our econometric representation is general in the sense described but has a structure

that is motivated by the objective of parsimony. Indeed, our model can be understood

as a restricted VAR model where, by adopting minimal economic restrictions to identify

the potentially different dynamic components of inflation, we induce ‘informed’ parsimony

thereby helping with signal extraction and forecasting. The proposed decomposition leads

to a rather complex state space form. In order to deal with this complexity, we estimate

the model using Bayesian methods. A Bayesian approach in the context of a similar but

simpler model has been proposed by Planas et al. (2008) who implement a Bayesian version

of the work of Kuttner (1994), by Grant and Chan (2017) who propose a Bayesian model

comparison focussing on trend-cycle decompositions of output and, more recently, by Lenza

and Jarociński (2016). The latter paper is the closest to our work but focuses on estimating

measures of the output gap in the Euro Area rather than on providing a decomposition that

can be used for studying the drivers of inflation dynamics. Our paper also shares a similar

approach and methodology with Del Negro et al. (2017), who employ a flexible VAR model

that incorporates long-term survey expectations, to estimate common trends and study the

natural rate of interest in the US.

Our work builds on the tradition of structural time series models (see Harvey, 1985),

where observed time series are modelled as the sum of unobserved components: common
5A discussion on the conditions under which survey data can be employed to study the PC is in Adam

and Padula (2011).
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and idiosyncratic trends, and cycles. In doing this, and by focussing on inflation dynamics,

this paper relates to the literature on the output gap, the Phillips curve, and trend inflation

estimation with unobserved components models, started by Kuttner (1994). Similarly to

Baştürk et al. (2014) and Lenza and Jarociński (2016), we do not pre-filter data to sta-

tionarity, but model their low frequency behaviour by allowing for trends. As in Gordon

(1982) and Basistha and Startz (2008), we use multiple real activity indicators to increase

the reliability of the output gap estimates. Also, our work relates to a number of papers

which have studied trend inflation in unobserved component models augmented with data

on medium-/long-term inflation expectations, as for example, Clark and Doh (2014), and

Mertens (2016).

2 A Stylised Model for Inflation Dynamics

At the core of our empirical approach lies a stylised full information rational expectations

model for inflation and output. In this section we discuss the intuition and basic building

blocks. We assume that inflation and output can be decomposed into three components: (i)

independent trends determining output potential µyt and trend inflation µπt ; (ii) a common

stationary cycle relating nominal and real variables (the output cycle is interpreted as the

output gap) ψ̂t; and (iii) some independent (white noise) disturbances to output and inflation,

ψyt and ψπt , that can be thought of as classic measurement error or idiosyncratic shocks. We

have:

yt = µyt + ψ̂t + ψyt , (1)

πt = µπt + δπψ̂t + ψπt , (2)

where the independent trends are assumed to be unit-root processes (with a drift in output)

µyt = µ0 + µyt−1 + uyt , (3)

µπt = µπt−1 + uπt . (4)
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The economic interpretation of the different trend and cycle components is standard

(see, for example the discussion in Yellen, 2015). The output trend – i.e. the output po-

tential, capturing the long-term growth of the economy – is usually thought of as driven

by technological innovation. Inflation fluctuates around a longer-term trend that, at least

in recent times, has been essentially stable. Theory relates this trend inflation to inflation

expectations that, in turn, are shaped by the conduct of monetary policy – for example, by

policymakers’ targets. Shocks of a different nature can impact marginal production costs

and modify the intensity of resource utilisation in the economy, thus, temporarily pushing

output away from its balanced growth path. The shortfall of actual GDP from potential

output is the output gap ψ̂t. The slack in the economy is reflected in the short-run cyclical

fluctuations of inflation around its trend, in the presence of price rigidity. This relationship

is generally described by an expectations-augmented Phillips curve in theoretical models.

Finally, a nontrivial fraction of the quarter-to-quarter variability of inflation and output is

attributable to independent and idiosyncratic shocks.

In line with the econometric literature on the output gap, we assume that ψ̂t is a sta-

tionary process with stochastic cyclical behaviour. The simplest process allowing for such a

stochastic cycle is an AR(2) process with complex roots of the form

ψ̂t = α1ψ̂t−1 + α2ψ̂t−2 + vt . (5)

Indeed, the AR(2) model can be written in a different and slightly more general form,

displaying its pseudo-cyclical behaviour more clearly , i.e.

ψ̂t = ρ cos(λ)ψ̂t−1 + ρ sin(λ)ψ̂∗t−1 + vt , (6)

ψ̂∗t = −ρ sin(λ)ψ̂t−1 + ρ cos(λ)ψ̂∗t−1 + v∗t ,

where the parameters 0 ≤ λ ≤ π and 0 ≤ ρ ≤ 1 can be interpreted, respectively, as the

frequency of the cycle and the damping factor on the amplitude while ψ̂∗t is a modelling
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auxiliary cycle and vt and v∗t are uncorrelated white noise disturbances (see Harvey, 1990).6

The disturbances make the cycle stochastic rather than deterministic and, if ρ < 1, the

process is stationary.

By assuming an output gap that is a stationary solution to an AR(2) process, the model in

Eq. (1-2) admits a hybrid expectations-augmented New Keynesian Phillips Curve connecting

the cyclical components of output, inflation, and inflation expectations, of the form

π̂t =
2∑
i=1

δiπ̂t−i + βEt [π̂t+1] + κŷt + εt , (7)

where hats indicate deviations from trends.7 In this model, rational expectations agents

correctly form model-consistent expectations about inflation, that is

Et [πt+1] = Et
[
µπt+1 + δπψ̂t+1 + ψπt+1

]
= µπt + δπ(α1ψ̂t + α2ψ̂t−1)

= µπt + δexp,1ψ̂t + δexp,2ψ̂t−1 .

The model can be written, in a compact reduced form representation in terms of the common

cycle, the trend common to inflation and inflation expectations, and the trend capturing

output potential (as well as the idiosyncratic disturbances):


yt

πt

Et [πt+1]

 =


1 0

δπ 1

δexp,1 + δexp,2L 1


ψ̂t

µπt

+


µyt

0

0

+


ψyt

ψπt

0

 . (8)

6It is straightforward to show that the model can be rewritten as

(1− 2ρ cos(λ)L+ ρ2L2)ψ̂t = (1− ρ cos(λ)L)vt + (ρ sin(λ)L)v∗t .

Hence, under the restriction σ2
v = 0, the solution of the model is an AR(2), otherwise an ARMA(2,1). The

intuition for the use of the auxiliary cycle is closely related to the standard multivariate AR(1) representation
of univariate AR(p) processes.

7Empirical studies often feature hybrid Phillips curves to account for inflation persistence (a recent survey
is in Tsoukis et al., 2011). Several different mechanisms have been proposed in the literature to introduce
hybrid Phillips curves such as indexation assumptions (e.g. Galí and Gertler, 1999), state-contingent pricing
(e.g. Dotsey et al., 1999), or deviations from rational expectations assumption (e.g. Erceg and Levin, 2003;
Milani, 2007).
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In principle, this simple set of equations can also accommodate different specifications for

the Phillips Curve, under suitable parameter restrictions. For example, an AR(1) ψ̂t would

be the solution to a purely forward looking New-Keynesian Phillips Curve. It also nests the

backwards looking ‘Old-Keynesian’ Phillips curve connecting output gap and prices – as in

the ‘triangle model of inflation’ (see Gordon, 1982, 1990).

Also, in line with the interpretation proposed, it is worth noting that trend inflation

corresponds to the long-run forecast for inflation, which implies

lim
h→∞

Et[πt+h] = µπt , (9)

in the spirit of Beveridge and Nelson (1981), and that trend output informs expectations of

growth in the long run:

lim
h→∞

Et[yt+h] = lim
h→∞
{µ0h+ µyt } . (10)

While such a stylised rational expectations model can provide the gist of the intuition for

our econometric model, it is likely to be too simple as an empirical representation of business

cycle dynamics.8 First, it does not allow for dynamic heterogeneity, and hence nominal and

real variables fluctuate only as contemporaneously connected by the slack in the economy,

in contrast with the evidence that prices and labour market variables respond with lags to

the slack in production. In fact, output is linked to unemployment via Okun’s law and

to inflation via the Phillips curve relationship which may involve lagging dynamics. These

fundamental relationships connect potentially different measures of the slack in the economy,

such as the output gap and the cyclical component of unemployment – i.e. the difference

between the unemployment rate and its normal long-run level (equilibrium unemployment)9

– and inform fluctuations at business cycle frequency in other real and nominal variables.

Second, in modelling price dynamics, forecasters and policymakers often distinguish

between changes in energy and food prices – which enter into headline inflation – and move-
8An estimated version of this model provides an unsatisfactory representation of the structure of the data.

Results are available in the Online Appendix D.
9For example, the measure of slack that is adopted in policy analysis by the Fed is obtained as the

difference between the unemployment rate and the Congressional Budget Office’s (CBO) historical series for
the long-run natural rate (as in Yellen, 2015).
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ments in the prices of other goods and services – that is, core inflation.10 This is because

food and energy prices tend to be extremely volatile and influenced by factors that are dis-

connected from the slack in the economy and that are beyond the control of monetary policy.

Examples are international political events – as is the case for oil price – as well as weather

or diseases – as for food and beverages.11 This decomposition is important to study how

slack in real output is transmitted to prices, by separating the direct impact of energy price

shocks onto energy products, from their role as cost push shocks in production.

Finally, it has been argued in the literature that, once inflation expectations are admitted

to a forward- or backward-looking Phillips curve equation, it is also possible that economic

disturbances impact prices without any intermediating transmission through the output gap

or other measures of slack in the economy (see, for example, Sims, 2008). In this spirit,

Coibion and Gorodnichenko (2015) argue that the absence of disinflation during the Great

Recession can be explained by the rise of consumers’ inflation expectations between 2009

and 2011 due to the increase in oil prices in this period. Also, while macro-variables are

likely to be affected by non-classical measurement error, agents’ expectations, as captured

by consumers’ and professional forecasters’ surveys, are likely to be only partially in line with

national accounting definitions of aggregate prices and can introduce measurement errors and

biases of a different nature.12

In the next section, we present an empirical model that expands on the core model to

accommodate these possibly important aspects of business cycle and inflation dynamics.
10The price index for total consumer price (headline) inflation πt is decomposed as

πt = πct + υ1π
en
t + υ2π

food
t , (11)

where πct is core CPI inflation, and πent and πfoodt are, respectively, the growth rate for prices of consumer
energy goods and services and prices of food, both expressed relative to core CPI prices; and υ1, and υ2 are
the weights of energy and food in total consumption. In the rest of the paper we focus on the energy price
component and abstract from food prices. Interestingly, both commodities are subject to the effect of global
factors and a few papers have reported a substantial share of co-movement between energy and food prices
(see, for example, Baumeister and Kilian, 2014).

11While the Federal Reserve’s inflation objective is defined in terms of the overall change in consumer
prices, core inflation is considered to provide a better indicator than total inflation for the developments in
prices, in the medium term.

12For example, especially in consumer surveys the forecast horizon may be loosely defined while the relevant
price index may be left unspecified. Also, projections are often reported at different frequencies and can
have different forecasting points.
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3 An Empirical Trend-Cycle Model

Our benchmark empirical model expands on the core rational expectations model presented

in the previous section to incorporate a rich information set including output, employment,

and the unemployment rate – as measures of real activity and labor market developments

–, CPI inflation, core CPI inflation and consumers’ and professionals’ forecasts for one year

ahead inflation – as proxies for economic agents’ inflation expectations –, and oil prices to

proxy for energy prices. To capture the complex dynamics relationships among the variables,

we generalise the stylised model presented in the previous section by incorporating dynamic

heterogeneity in the relationship linking real variables, labour market outcomes, and prices

and by allowing for deviations from perfect rationality.

Our model provides an empirical specification of a number of key macroeconomic con-

cepts. A unit root trend with drift provides a time varying measure of output potential,

while the trend in employment/unemployment captures the evolution of equilibrium unem-

ployment. The cyclical component of unemployment connects to fluctuations in output at

business cycle frequency via an Okun’s law that involves the output gap and its lagged value.

This allows business cycle fluctuation to have dynamic heterogeneity and the labour market

to respond with a lag to the slack in the economy. A unit root trend – common to headline

and core CPI inflation, and inflation expectations – captures the inflation trend shaping long

term expectations. The slack in the economy is reflected in the short-run cyclical fluctuations

of inflation (and expectations) via a Phillips curve relationship involving the output gap and

its lagged value that accommodates for a slow adjustment of prices to slack, in the presence

of nominal rigidities. Also, oil prices are allowed to co-move along the business cycle and

possibly its lagged value, due to demand effects or mark-up shocks. The fact that the cyclical

component of output informs economy-wide lead-lag fluctuations in both labour market and

nominal variables supports the interpretation of the output gap as a measure of the business

cycle.

We also design the model to be able to account for several potential deviations from

the rational expectations benchmark. In particular, we allow for (i) oil price disturbances to

affect prices either directly via energy prices in headline CPI, or via economic agents’ forecasts

12



Table 1: Data and transformations

Variable Symbol Mnemonic Transformation

Real GDP yt y Levels
Employment et e Levels
Unemployment rate ut u Levels
Oil price oilt oil Levels
CPI inflation πt π YoY
Core CPI inflation πct πc YoY
UoM: Expected inflation F uomt πt+4 uom Levels
SPF: Expected CPI F spft πt+4 spf Levels

Note: The table lists the macroeconomic variables used in the empirical model. ‘UoM: Expected inflation’
is the University of Michigan, 12-months ahead expected inflation rate. ‘SPF: Expected CPI’ is the Survey
of Professional Forecasters, 4-quarters ahead expected CPI inflation rate. The oil price is the West Texas
Intermediate Spot oil price.

by inducing a transitory disanchoring of expectations, with a stationary cycle connecting oil

prices, expectations, and inflation but not the measure of slack in the economy; (ii) a time

varying bias i.e. a permanent disanchoring of expectations in the form of unit root processes;

(iii) non-classic measurement error in the variables and other sources of coloured noise.

We summarise these modelling choices in the following assumptions.

Assumption 1 CPI headline inflation, core CPI inflation and agents’ inflation expectations

(consumers’ and professional forecasters’) share a common random walk trend (viz.

trend inflation).

Assumption 2 Real output, employment, and unemployment have independent trends

modelled with unit roots, with a drift for output and employment (i.e. potential

output and equilibrium employment/unemployment respectively).

Assumption 3 Business cycle fluctuations in output are described by a stationary process

with stochastic cycle in the form of an ARMA(2,1) process with complex roots (i.e.

output gap).

Assumption 4 Inflation, inflation expectations, and output are connected by a Phillips

curve relationship defined as a moving average of the output gap and its first lag.

13



Assumption 5 Labour market variables are linked to output via the Okun’s Law defined

as a moving average of the output gap and its first lag.

Assumption 6 Oil prices co-move with the business cycle via a a moving average of the

output gap and its firs lag (business cycle component of oil prices).

Assumption 7 Inflation expectations and inflation are connected, via a moving average of

order one, to an ARMA(2,1) cycle in oil prices (Energy cycle).

Assumption 8 All variables can have an idiosyncratic ARMA(2,1) cycle component, pos-

sibly capturing non-classic measurement error, differences in definitions and

other sources of noise.

Assumption 9 Agents’ (consumers and professional forecasters) expectations have inde-

pendent idiosyncratic unit roots without drift, capturing time varying bias in the

forecast.

Assumption 10 All components are mutually orthogonal.

A key and novel feature of our modelling strategy is to allow the oil prices to affect and

be affected by both the standard business cycles and what we define as an energy price cycle.

Fluctuations in the latter component are reflected in prices and inflation expectations without

affecting output and the labour market. This orthogonality assumption is a convenient

statistical device helpful in teasing out components in the price dynamics which have weak

or negligible impact on the US output gap and labour market, and that may happen at

frequencies different from those of the standard business cycle frequency range.

For the purpose of this analysis the University of Michigan (UoM) consumer survey and

the Federal Reserve Bank of Philadelphia’s Survey of Professional Forecasts (SPF) one year

ahead inflation forecast were chosen as proxies for consumers’ and professionals’ expectations.

This because they both have relatively long histories and are available at quarterly frequency.

Both of them target CPI inflation, either explicitly as is the case for the SPF or, implicitly,

by surveying consumers, as is the case for UoM. For both surveys, we employ the median

expected price change in the four quarters following the date of the survey, which is consistent
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with our use of year-on-year inflation. Data incorporated in the model are at quarterly

frequency, with the sample starting in Q1 1984 and ending in Q2 2017. All variables enter

the model in levels, except for price variables which are transformed to the year-on-year

inflation rate (see Table 1 for details).

Our model in xt := {yt, et, ut, oilt, πt, πct , F uom
t πt+4, F

spf
t πt+4} can be written as



yt

et

ut

oilt

πt

πct

F uom
t πt+4

F spf
t πt+4



=



1 0 0

δe,1 + δe,2L 0 0

δu,1 + δu,2L 0 0

δoil,1 + δoil,2L 1 0

δπ,1 + δπ,2L γπ,1 + γπ,2L φπ

δπc,1 + δπc,2L γπc,1 + γπc,2L φπc

δuom,1 + δuom,2L+ δuom,3L
2 γuom,1 + γuom,2L φuom

δspf,1 + δspf,2L+ δspf,3L
2 γspf,1 + γspf,2L φspf




ψ̂t

ψEPt

µπt

+



ψyt

ψet

ψut

ψoilt

ψπt

ψπ
c

t

ψuomt

ψspft



+



µyt

µet

µut

µoilt

0

0

µuomt

µspft



(12)

where φπ, φπc , φuom, and φspf are normalised to have unitary loading of inflation and inflation

expectations on trend inflation.13 It is worth noting that our empirical specification in

Equation 12 would reduce to the stylised rational expectations model in Equation 8, under

suitable parametric restrictions. In the Online Appendix D, we report a number of simplified

models and their estimation results to show how different assumptions impact on the final

specification of the model.

Like the output gap in Equation 6, the energy cycle and the idiosyncratic ARMA(2,1)

stationary cycles can be written in the following form:ψjt

ψ∗jt

 = ρj

 cos(λj) sin(λj)

− sin(λj) cos(λj)

ψjt−1
ψ∗jt−1

+

 vjt

v∗jt

 ,

 vjt

v∗jt

 ∼ N (0, ς2j I2) (13)

where j ∈ {EP, x1, . . . , xn} and ψ∗j, as discussed, is a term capturing an auxiliary cycle. For

stationarity, we impose 0 < λj ≤ π and 0 < ρj < 1 for all cycles, including the output gap.

There are four main advantages to modelling the stationary components as restricted

ARMA(2,1) processes. First, this representation nests an AR(2) that is the simplest lin-
13In the empirical model, the series are standardised so that the standard deviations of their first differences

are equal to one. For this reason, we normalise φπ, φπc , φuom, and φspf to the reciprocal of the standard
deviation of the first difference of the respective variable.
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Table 2: Prior distributions

Name Support Density Parameter 1 Parameter 2

δ, γ, φ and τ IR Normal 0 1000
σ2 and ς2 (0,∞) Inverse-Gamma 3 1
ρ [0.001, 0.970] Uniform 0.001 0.970
λ [0.001, π] Uniform 0.001 π

Note: Prior distribution for the model parameters adopted in estimating the model with US data. All of
the priors are uniform over the range of the model parameters compatible with our modelling or weakly
informative. Boundaries of the uniform priors ensure that the stochastic cycles are stationary and correctly
specified according to the restrictions described in Harvey (1990).

ear process able of displaying pseudocyclical behaviour of the type it is associated with the

business cycle and other economic cycles. Second, it allows for an explicit characterisation

of the relevant cyclical parameters – frequency and decay rate –, over which it is possible

to specify transparent priors. Third, it is a very parsimonious representation with a small

number of parameters and hence the estimation of many stationary components is compu-

tationally feasible. Fourth, the presence of an additional MA(1) component is potentially

able to accommodate for additional persistence in the data.

As discussed, the common and idiosyncratic trends are random walks (with/without

drifts – µj0) that can be written as

µjt = µj0 + µjt−1 + ujt , ujt ∼ N (0, σ2
j ) .

All of the stochastic disturbances in the model are assumed to be mutually orthogonal and

Gaussian. Finally, it is worth noting that the common and idiosyncratic trends in inflation

and inflation expectations are identified up to a constant (see Bai and Wang, 2015, for a

discussion on identification). For the sake of interpretation, we attribute the constant to the

common trend so that it is on the same scale as the observed inflation variables.

4 Bringing the Model to the Data

Our estimation strategy builds on the approach recently suggested by Harvey et al. (2007),

that adopts modern Bayesian techniques to support the estimation of ‘structural’ trend-cycle

16



0 1 2 3

0

5

10

15

20

0 1 2 3

0

2

4

0 0.2 0.4 0.6 0.8

0

50

100

150

0 0.2 0.4 0.6 0.8

0

2

4

6

8

0 0.5 1 1.5

0

2

4

6

8

0 0.5 1 1.5

0

1

2

3

4

0 0.5 1 1.5

0

20

40

60

80

Prior Posterior

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

Frequency, BC cycle

Variance, BC cycle

Frequency, EP cycle

Variance, EP cycle

Persistence, BC cycle

Variance, Common trend

Persistence, EP cycle

Figure 1: Prior distributions (in red) and posterior distributions (in blue) of the frequency of the common
cycles, persistence of the common cycles, and the variance of the shocks to the common cycles and common
trend.

models à la Harvey (1985). In estimating the model, we elicit prior distributions that are

either uniform over the range of the model parameters compatible with our modelling choices

(i.e. 0 < λj ≤ π and 0 < ρj < 1), or weakly informative and in the form of very diffuse

Normal and Inverse Gamma priors. Table 2 reports the parameters of our prior distributions.

We maximise and simulate the posterior distributions with a Metropolis-Within-Gibbs

algorithm that is structured in two blocks. In the first block, we estimate the state space

parameters by the Metropolis algorithm and, in the second block, we use the Gibbs algorithm

to draw unobserved states conditional on model parameters. Relevant details and references

are in the text and Appendix Appendix A.14

An important question concerns the role of the priors in identifying the model. Figure 1

and Figure 2 illustrate prior and posterior distributions for the variance of the error terms of

the unobserved components, the frequency and persistence of the two common cycles, and

14The lags for the survey variables in Equation 12 are implemented by including the auxiliary cycle ψ∗j
t

from Equation 13.
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Figure 2: Prior distributions (in red) and posterior distributions (in blue) of the coefficients for the common
cycles of CPI inflation and Core CPI inflation.

the coefficients for the common cycles.15 The charts provide a good indication on whether

data provide enough information to identify the model parameters. Indeed, the posterior

distributions are well peaked and not shaped by the priors, and show that the data is very

informative in estimating the many parameters of the model – in particular the variance

of the shocks of the common components and the frequencies of the cycles. Importantly,

the posterior distributions of the coefficients for the common cycles (Figure 2) indicate that

coefficients equal to zero have negligible probability to be drawn in both cases. Moreover, our

results are robust to changes in the parameters of the distributions of the more informative

priors. See Appendix Appendix C.
15The posterior distributions of the full set of model parameters can be found in Appendix Appendix B.
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5 Trends and Cycles in the US Economy

The empirical model produces a coherent historical narrative of business cycle dynamics and

an evaluation of how they impacted inflation dynamics, as well as a set of model-consistent

measures for trend inflation, equilibrium unemployment, and output potential.

We start by analysing economic trends identified and estimated by the model in the next

section and then move to economic cycles in the following one. We compare our assessment

of trend-cycle dynamics with the estimates by the Congressional Budget Office (CBO) and

the Board of Governors of the Federal Reserve.

5.1 Trend Inflation, Equilibrium Unemployment, GDP Potential

The model delivers very smooth and stable trends. Figure 3 plots real GDP, employment,

unemployment, and oil prices against the median of the estimated independent trends, along

with coverage bands (at 68% darker shade, and at 90% lighter shade coverage rate). Output

trend, which can be thought of as a measure of potential output, is compared with the

corresponding measure provided by the CBO.

While both trends are equally stable, they provide a different description of long term

growth in the US. Since 2001, the model-implied trend lies below the CBO trend implying

that, while the CBO’s reading of the data is that the US economy had only just reached its

potential at the pre-crisis peak in 2008, our model signals an overheating of the economy

from 2006 to 2008 and a marked slow-down of trend growth in the last part of the sample.

Figure 3 also compares the model-implied measure of equilibrium unemployment against

the CBO’s measure for the natural rate of unemployment (NAIRU). The two measures

coincide in the first part of the sample while they diverge post-2000. While our model

provides a very stable unemployment trend hoovering around 6% and with a temporary

and small increase around the financial crisis in 2008, the CBO NAIRU shows a slow and

persistent decline of the trend continuing through the crisis.16

16In the baseline model we include employment measured as number of employed people. However, an
important concern relates to the behaviour of the employment-to-population ratio (or active population),
which has shown a marked decline since the Great Recession, standing at 61% in November 2019 down
from a pre-crisis level at 63%. In a robustness exercise reported in the Online Appendix E, we substitute
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Figure 3: Independent trends of output, employment, unemployment, and oil prices (in blue), with coverage
intervals at 68% coverage (dark shade) and 90% coverage (light shade), as estimated by the model. The
chart also reports the measures of potential outputs and NAIRU estimated by the CBO (in red).

The trend in the oil price shows a hump-shaped increase in the second half of the sample

that may be related to the global increase in oil demand post-2000. It is important to observe

that, in our model, trends are jointly estimated with the cyclical components. Hence, the

differences between our estimated trends and those of the Fed and the CBO have relevant

implications for the reading of business cycle dynamics. This will be analysed in Section 5.5.

The inflation trend common to headline CPI, core CPI inflation, and consumers’ and

professional forecasters’ inflation expectation variables is shown in Figure 4. Trend inflation

appears to be roughly stable from 2000 to 2010 and, interestingly, is closely tracked by the

SPF median forecast. The behaviour of UoM expectations, on the other hand, shows large

employment with employment-to-population ratio in the model. While all of the results reported in this
section are robust to the inclusion of this variable, the model captures a persistent decline in the equilibrium
trend of the participation rate, following the Great Recession.
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Figure 4: Trend common to CPI inflation, core CPI inflation, and inflation expectations (in blue), with
coverage intervals at 68% coverage (dark shade) and 90% coverage (light shade), as estimated by the model.

and persistent deviations from the common trend (long-term inflation expectations) since

2004. We interpret this sizeable time-varying idiosyncratic trend as a bias in consumers’

expectations.

The unit-root inflation trend can be connected to the long-term inflation expectations

of rational agents under the assumption that the ‘law of iterated expectations’ holds (see

Beveridge and Nelson, 1981 and Mertens, 2016). This interpretation is supported by Figure 5
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where CPI inflation is plotted against the implied trend and the median 10-year ahead SPF

inflation forecast. The chart provides a visual validation of our interpretation that the model

trend estimate captures long-term expectations.

5.2 Business and Energy Price Cycles

Figure 6 shows the estimated common cycles in both the time and frequency domains, while

Figure 7 shows their contribution in headline CPI inflation. The first cycle provides a direct

measure of the slack in the economy and captures fluctuations of output around its potential.

It also connects real, labour market, and nominal variables and hence can be interpreted as

a measure of the business cycle. For this reason, in what follows, we refer to it as ‘business

cycle’ with a slight abuse of terminology. The upper charts in Figures 6 and 7 report the

median of the posterior distribution of the business and energy price cycles with relative

coverage intervals at 68% coverage (dark shade) and 90% coverage (light shade). The lower

charts show the associated spectral densities and coverage bands. The charts indicate that

the ‘business cycle’ is quite regular and much less volatile than the energy price cycle. The

spectral shape shows that the business cycle contributes to the inflation spectral shape with

a relatively well defined peak and with a cycle between 7 and 8 years periodicity. Conversely,

the energy price cycle occupies a broader range of frequencies with a less well defined peak

and a periodicity about half as long as that of the business cycle.
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Figure 6: Top: Business cycle and Energy Price cycle, with coverage intervals at 68% coverage (dark shade)
and 90% coverage (light shade). Bottom: Parametric spectrum of the Business cycle and Energy Price cycle.

5.3 Historical Decomposition

Let us now turn to the historical decomposition of the stationary components of the eight

variables of interest into common and idiosyncratic cycles, as provided by the model. Figure 8

shows the results. Overall, the model provides a coherent description of inflation dynamics

with a number of interesting features.

First, the business cycle (in blue) capture almost entirely the fluctuations around trend

in real output, employment and unemployment. A negligible idiosyncratic component (in

yellow) is visible only in unemployment and almost non-existent in output and employment.

This indicates that our measure of the output gap captures the slack in the economy well

and is transmitted, via the lagged Okun’s law relationship to the labour market. It should be
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Figure 7: Top: Business cycle and Energy Price cycle components in CPI inflation, with coverage intervals
at 68% coverage (dark shade) and 90% coverage (light shade). Bottom: Parametric spectrum of the Business
cycle and Energy Price cycle.

stressed that lags are important in describing the delayed transmission from output dynamics

to the labour market and may capture different types of labour market frictions.

Second, a non negligible share of oil price fluctuations is due to the comovement of this

variable with the slack in the economy, along the business cycle. This may be due either

to the demand effect of the US economy onto global oil prices, or the role of oil shocks as

mark-up shocks in the aggregate production function.

Third, the slack in the economy is reflected in price dynamics via the Phillips curve which

captures the lower frequency dynamics in the inflation cycle and accounts for a sizeable share

of the variation in CPI inflation and most of the variation in core CPI inflation. This ‘real’

component dominates SPF expectations while it provides a sizeable but not dominant share

of variation in consumers’ expectations. In our model the Phillips curve is a lagged rela-
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Figure 8: Historical decomposition of the cycles, as estimated by the model. The chart reports the Business
cycle (in blue), Energy price cycle (in red), and idiosyncratic cycle (in yellow).

tionship connecting prices, expectations and output and hence labour market variables, in

the spirit of the empirical relationship uncovered by Phillips (1958). A discussion about

its ‘steepness’ may be slightly misleading since a reduced form relation between prices and

unemployment would involve different lags of our business cycle. Nonetheless, in Figure 9,

we compare a scatter plot showing how the business cycle components of CPI and unemploy-

ment would be related (red dots) with a scatter plot of (demeaned) CPI and unemployment
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Figure 9: This chart plots the Business cycle component of CPI inflation against the Business cycle
component of the unemployment rate (red dots) and the corresponding bivariate linear regression line (red
line). The red crosses represent points the the post Great Recession subsample (from 2008 to 2018). The
chart also plots demeaned CPI inflation against the demeaned unemployment rate (blue dots) and the
corresponding bivariate linear regression line (blue line).

variables (blue dots). The linear fit has a slope of -0.39 for the model based measures (red

line), against a slope of -0.14 for a naïve estimate (blue line).17 This is a rough way to assess

the strength of the Phillips curve identified by our model against that of a naïve estimate of

its steepness.

Fourth, the stationary component of CPI inflation is dominated by the energy price cycle.

This can be explained by the fact that energy prices are one of the components of the CPI

basket and tend to be extremely volatile with a weak correlation with the slack in the national

economy. Notice also that, while small, the energy price component is also visible and non-
17The red crosses represent points the the post Great Recession subsample (from 2008 to 2018). Interest-

ingly, the years since the beginning of the last recession seem to be described by the ‘regular pattern’ in the
data, albeit they trace a larger than usual ‘cycle’.
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negligible in core CPI inflation where, by construction, energy prices are removed. This

suggests that oil shocks impact core CPI inflation indirectly via expectations and not via the

output gap or other measures of slack in the economy. In fact, as suggested by Coibion and

Gorodnichenko (2015), household expectations are not fully anchored and respond strongly

to oil price changes. Conversely, as observed above, the SPF median forecast tracks the

unit-root trends while its cyclical component is dominated by the persistent business cycle

component. In other words, the SPF forecasts are relatively unaffected by the volatile and

less persistent energy price component. In this respect, the dynamics of the median SPF

forecast seem to be consistent with a rational forecast.

Finally, overall, the cyclical part of inflation is well captured by the two common com-

ponents and little is left to idiosyncratic forces. However, the two common cycles are not in

any sense ‘synchronised’ . This sheds light on some of the puzzling behaviour of inflation

since 2008. From 2011 to mid 2012 the inflation cycle is supported by oil prices while the

Phillips curve exerts negative pressure. The opposite is true from 2015 to the end of 2016

when oil prices drag inflation down while the Phillips curve exerts a small upward pressure.

5.4 The Role of Oil

As discussed, oil shocks can impact price dynamics via several different channels. First, as

cost-push shocks in production, they impact prices via the Phillips curve. Also, oil prices

can fluctuate due to US internal demand along the business cycle. These channels are

directly captured by the common business cycle that connects the slack in the economy to

oil prices and inflation. Secondly, they directly affect the prices of energy services which

enter the consumption basket of headline CPI without affecting the output gap. This second

channel is likely to explain most of the contribution of the energy price cycle to headline CPI

inflation. Thirdly, they can generate ‘non-fundamental’ movement in consumers’ inflation

expectations and shift prices via this mechanism. This third channel is likely to explain

the energy price cycle component in consumers’ expectations and, importantly, in core CPI

inflation which excludes energy prices. Overall, this channel is quantitatively non dominant

in price dynamics albeit potentially very important since it is not under the control of

standard monetary policy.
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Figure 10: Idiosyncratic trends of oil prices (left) and UOM Expected Inflation (right), with coverage
intervals at 68% coverage (dark shade) and 90% coverage (light shade), as estimated by the model.

Much of the historical differences in inflation expectations between households and pro-

fessional forecasters can be accounted for by the contribution of oil prices. This was originally

observed by Coibion and Gorodnichenko (2015) who also attribute to oil shocks a sizeable

effect on consumer expectations. In our framework the effect can only be present through

common stationary cycles and trends. However, our results show that there is a large idio-

syncratic trend component in oil prices which, by construction, does not affect CPI inflation.

Figure 10 plots it against the idiosyncratic consumers’ expectation trend and provides sug-

gestive evidence that consumer price expectations may actually have a persistent component

related to oil prices. Our framework leaves it as unmodelled, and to future research.

5.5 The Output Gap and a Narrative of the Great Recession

In the narrative emerging from the model, the output gap has a crucial role. Figure 11

reports the model-based output gap as well as the gap published by the CBO and the one

by the Fed Greenbooks. The model’s and the CBO/Fed business cycle dating of the turning

points perfectly coincide as the peaks and troughs alignment shows. However, the model-

consistent measure and the other two differ in their assessment of the the degree of slack

in the economy since 2001. In fact, at the time of the slowdown of 2001-2002, our model

indicates that the economy went from over-capacity to trend growth but, unlike the CBO’s,

does not identify a protracted period of slack.
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Figure 11: Output gap (in blue), with coverage intervals at 68% coverage (dark shade) and 90% coverage
(light shade), as estimated by the model. The model-based estimates of the output gap is obtained by
rescaling the business cycle to match the GDP scale and by summing to it the output idiosyncratic cycle
component. The chart also reports the output gap from the CBO (in red) and the Fed’s Greenbook (in
green).

Notably the model attributes a smaller share of the reduction in GDP following the Great

Recession to its cyclical component – as compared as the CBO’s and by the Fed Greenbook’s

estimates – and hence projects a lower output potential with a marked slow down in output

trend growth that starts before last recession but that becomes manifest in its aftermath (in

Figure 3 and Figure 11). The CBO has a more optimistic assessment of the trend growth

and attributes the slowdown since the early millennium to a very deep contraction in the

cyclical component of output. Its estimated output gap considers the US economy to have

been below potential since 2001 and even at the height of the peak preceding the Great

Recession, when the US economy was supported by the unusual dynamics in the real estate

market.

It is important to observe that the two different narratives are the specular image of the

question regarding the stability of the Phillips curve. Our model’s estimate of the output gap

is informed by loose priors on trends, the inflation trends implicit in agents’ expectations,

and above all the multivariate links connecting prices to the labour market and to output.

In doing this, it assumes the stability of the Phillips’s curve and of the Okun’s Law. It finds

that the data matches this description but shows a substantial decline in output potential

(and a roughly constant equilibrium unemployment). Conversely, a view of the US economy

assuming a very stable potential output would imply a widening output gap and hence
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a flattening of the Phillips Curve. Both interpretations are plausible. The two different

narratives of the economic developments since 2001 are based on different and untestable

assumptions about the long run behaviour of output and other variables and there is no

obvious criterion on the basis of which we can choose the ‘correct’ one (see, for example, the

discussion on trends in Sims, 2000).

Several narratives are compatible with the model’s assessment. For example, Hall et al.

(2017) have pointed to a lower productivity growth trend preceding the Great Recession and,

using a growth accounting framework, have argued that the slowdown was due to the long-

term trend in labour force participation and TFP growth. The slowdown in the pre-Great

Recession period may have been masked by the dot-com bubble first and the financial boom

later, possibly in line with Borio et al. (2017). This ‘productivity view’ is captured in our

model by a trend slow-down starting at the beginning of the millennium. In addition, the

model attributes part of the slowdown since 2008 to the trend, in line with the ‘hysteresis

view’ on the post-crisis period according to which deep recessions can cause hysteresis in

the form of permanent (or very persistent) changes to potential output (see the discussion

in Blanchard et al., 2015, as an example).18

Let us stress here that one should not see our results as supporting the view that the

Great Recession was mild, given our estimate of the output gap. Rather, our results support

a pessimistic assessment of long-run trends in the wake of the financial crisis, although the

model is unable to identify whether the source this persistent slow-down are demand or

supply factors (see also the discussion in Coibion et al., 2018).19

18Blanchard et al. (2015) using multi country data but not a model based approach conclude that several
recessions of different nature are followed by lower growth. They conclude that “in many cases, the correlation
between recessions and subsequent poor economic performance reflects reverse causality: the realization that
growth prospects are lower than was previously assumed naturally leads to both a recession and subsequent
poor performance.” However, in other cases “hysteresis, and perhaps even super-hysteresis may indeed also
be at work.”

19Coibion et al. (2018) observe that “one should draw little inference from the evolution of estimates
of potential GDP about the persistence of GDP changes; these estimates fail to exclusively identify supply
shocks that should drive potential GDP and instead also respond to transitory demand shocks. The fact that
most of the output declines observed since the Great Recession are now attributed to declines in potential
GDP would imply little, other than that these declines have been persistent because estimates of potential
GDP fail to adequately distinguish between the underlying sources of changes in GDP.”
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6 Global Factors in US Inflation

In recent years, the potential impact of globalisation on price dynamics has drawn attention

from both policymakers and academics. The literature has suggested that the increase

in international trade has negatively impacted the strength of the domestic Phillips curve

relationship and increased the significance of ‘global slack’ and exchange rates in relation

to CPI. Several channels have been proposed including the increasing impact of demand

from emerging markets that has affected volatility in commodity prices, the increased price

competition and the greater role of supply chains have reduced firms’ pricing power, or that

the reduced bargaining power of local workers has weakened the role for domestic slack (see

Galí, 2010, for a theory-informed discussion of the literature on the topic).

Indeed, a number of empirical works have identified a sizeable global common factor in

inflation dynamics (e.g. Ciccarelli and Mojon, 2010, and Mumtaz et al., 2011), or proposed

to add a measure of global slack (e.g. Borio and Filardo, 2007, Castelnuovo, 2010), supply

chain intensity (e.g. Auer and Fischer, 2010; Auer et al., 2017) or exchange rates (e.g. Forbes

et al., 2017) in the econometric specifications of price equations.

In our analysis we have so far abstracted from these considerations. We instead focussed

on the energy price cycle which we extracted as a process that is orthogonal to domestic

slack and not reflected in the output gap and in the labour market conditions in the US. An

important question is whether the energy price cycle reflects global demand and commodity

price cycles, as suggested, for example, by Delle Chiaie et al. (2018). To try and address this

question, we estimate a new version of the model that expands the benchmark specification

by including the two different measures of global activity: (i) the Baltic Dry Index and index

of global cargo shipments, initially proposed by Kilian (2009) but taken in levels; (ii) the

measure of Global Industrial Production proposed by Baumeister and Hamilton (2019) and

based on the OECD methodology.20

20In an explorative analysis reported in the Online Appendix F, we provide scatter-plots and correlation
coefficients for the business and the energy price cycles in relation to three variables measuring global activity:
(i) the Baltic Dry Index; (ii) the global industrial production (GIP); and (iii) the Global Condition Index
(GCI) of Cuba-Borda et al. (2018).
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In this new specification, all the variables in the model are allowed to load onto the US

business cycle as a reflection of the global significance of the US economy both in terms

of share of world GDP and as driver of global economic activity. As in the benchmark

specification, US GDP and labour market variables do not load on the energy price cycle,

while all the others – including the Baltic Dry Index and global industrial production – can

have an impact on it.21

In the new specification, the decomposition of the US variables in terms of the BC and

the EP is largely unchanged, despite the introduction of global variables, as reported in

Figure 12. This is reassuring and shows that results are robust. However, the new model

offers interesting insights on the role of global shocks in the US inflation dynamics.

First, the US business cycle drives a large portion of the global economy and hence of

the global business cycle fluctuations. This is visible in the large share of the two global

indicators explained by the US business cycle component and that is due to both the US

weight in world GDP but also to the share of the global activity that is synchronised on the

US business cycle.

Second, the energy price cycle now explains a sizeable share of the Baltic Dry Index and

oil prices but a smaller share of Global Industrial Production. A possible interpretation is

that the fluctuations captured by the energy price cycle are due to oil supply shocks and

possibly financial shocks in the commodity markets, rather than to global demand factors.

Interestingly, in the global model, the spectral shape of the energy price cycle is well defined

and peaks in a range higher than business cycle frequencies.

21The Online Appendix F reports details of the model and additional charts.
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Figure 12: Historical decomposition of the cycles, as estimated by the model. The chart reports the
Business cycle (in blue), Energy price cycle (in red), and idiosyncratic cycle (in yellow).
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7 Model Forecasting Performance

In the previous sections we showed that a trend-cycle model, incorporating key economic

relations and allowing for deviations of agents’ forecasts from full information rational ex-

pectations, provides a coherent ‘structural’ interpretation of economic developments in the

US from the 1980s onwards, based on fundamental and generally accepted economic rela-

tionships. While this is an important and desirable feature of the ‘in-sample’ behaviour of

the model, an additional test of robustness and reliability of the model is provided by its

out-of-sample behaviour.

In this section we provide an out-of-sample assessment of the model along two dimensions.

First we look at trends and cycles extracted by the model in expanding samples, as it would

happen in out-of-sample forecast, and check for their stability. This is important in assessing

whether the historical decomposition provided by the model is reliable in a pseudo-real-time

exercise. Second we test the out-of-sample forecasting performance of the model against

two of the best performing models used for inflation forecasting. Forecasting inflation is

notoriously difficult and good performance from such a complex model would provide indirect

evidence of whether the model is able to capture important features of the data generating

process.

Figure 13 shows the revisions of the two common cycles and of the inflation trend over

time with an expanding data window. The model is re-estimated every quarter. The period

from Q1 1984 to Q4 1998 is employed as the pre-sample, while the evaluation sample starts

in Q1 1999 and ends in Q2 2018. Results show that trends and the common business cycle

are fairly stable overall and provide an assessment of the development in the economy that

is evenly consistent over the sample - including in the recessions. The energy price cycle

provides a slightly less stable, albeit roughly coherent, reading of the contribution of energy

fluctuations to prices.

The forecasting exercise is conducted in the same sample and again the period from Q1

1984 to Q4 1998 serves as the pre-sample. We use an expanding window and recursively

forecast up to 8 quarters ahead. The final quarter that we condition the forecasts on is Q2

2016, so that the last 8-quarters-ahead forecast is for Q2 2018. In every quarter we reestimate
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Figure 13: This chart shows the revisions of the business cycle (top), energy price cycle (middle), and
common trend (bottom) as estimated during the OOS forecasting exercise.

the model, including the unobserved components and the coefficients. Apart from our model

(TC), we consider (i) a BVAR where priors are set as in Giannone et al. (2015), (ii) a

BVAR with “long-run” prior as in Giannone et al. (2019), and (iii) an univariate unobserved

components IMA(1,1) with stochastic volatility model as suggested by Stock and Watson

(2007) to be tough benchmarks for inflation forecasts. In setting the system with long-run

priors we try to closely replicate the main assumptions on trends adopted in our trend-

cycle model. In particular, we set long-run priors considering a common trend between CPI

inflation, core CPI inflation, and inflation expectations. We allow for the difference between

core CPI inflation and CPI inflation, and the difference between inflation expectations and

CPI inflation to be stationary.22

22In the Online Appendix G, we provide details on how the long-run priors are elicited, following an
approach that is analogous to the one followed in designing the trend-cycle model.
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For all models we report the root mean squared forecast errors relative to those of a

random walk with drift for forecasting horizons of one, two, four, and eight quarters. We

also report the test statistical significance of each benchmark model forecast against the

trend-cycle model forecast using Diebold and Mariano (1995) with a quadratic loss function

and the modification from Harvey et al. (1997). The Diebold-Mariano test assesses the null

hypothesis that the benchmark model forecast and the trend-cycle model forecast are equally

accurate. Hence, if the relative root mean squared forecast error of the benchmark model

is larger than the relative root mean squared forecast error of the trend-cycle model and

we can reject the null hypothesis of equal accuracy, we are allowed to conclude that the

trend-cycle model forecast is statistically significantly more accurate than the benchmark

model forecast.

Results are reported in Table 3. They show that the trend-cycle model outperforms all

others for CPI inflation and core CPI inflation at the 4 and 8 quarters ahead horizons. Our

conjecture is that our advantage with respect to the two BVARs is driven by the random walk

trend which captures the slow-moving, low frequency component. This is consistent with the

fact that the advantage of the trend-cycle model over the BVARs is statistically significant

for core inflation at least at the 10% level but not for CPI inflation, since the inflation

trend explains a larger fraction of core inflation than of CPI inflation. The advantage of the

trend-cycle model with respect to the UC-SV models is most likely due to the Phillips curve

which captures cyclical co-movements. This explains why the advantage is more significant

at shorter horizons, where the cyclical components in the forecast are larger than at long

horizons. The trend-cycle model and the BVARs have similar performance in relation to

the other variables with the exception of employment one quarter ahead where both BVARs

outperforms our model with a difference which is statistically significant at the 10% level.

Results seem to indicate that despite the large number of parameters and the imposition

on the data of structural relationships dictated by economic theory, the model provides a

stable historical decomposition in a pseudo real-time exercise and very good performance in

forecasting. We consider this as evidence providing support to the claim that the model is

able to capture important features of the data generating process.

36



Table 3: Relative Root Mean Squared Errors

Horizon Variable TC Model MN-SOC-BVAR PLR-BVAR UC-SV

h=1

Real GDP 1.00 0.95 0.94 x
Employment 0.94 0.76* 0.75* x
Unemployment rate 0.82 0.68 0.63 x
Oil price 1.06 1.09 1.08 x
CPI Inflation 0.97 0.91 0.86 1.00***
Core CPI Inflation 1.00 1.03 0.97 1.01***
UOM: Expected inflation 1.03 1.04 0.99 x
SPF: Expected CPI 1.00 1.06 1.06 x

h=2

Real GDP 1.02 0.96 0.97 x
Employment 0.95 0.75 0.75 x
Unemployment rate 0.80 0.72 0.65 x
Oil price 1.08 1.18 1.19 x
CPI Inflation 0.95 0.97 0.92 0.99***
Core CPI Inflation 0.95 1.13 1.04 0.99***
UOM: Expected inflation 1.01 1.09 1.04 x
SPF: Expected CPI 0.97 1.18** 1.24* x

h=4

Real GDP 1.04 1.04 1.04 x
Employment 0.99 0.82 0.81 x
Unemployment rate 0.81 0.84 0.75 x
Oil price 1.12 1.26 1.26 x
CPI Inflation 0.95 1.12 1.05 0.98**
Core CPI Inflation 0.89 1.22* 1.12 0.96***
UOM: Expected inflation 1.11 1.15 1.10 x
SPF: Expected CPI 0.91 1.28* 1.42** x

h=8

Real GDP 1.11 1.21 1.16 x
Employment 1.07 1.01 0.95 x
Unemployment rate 0.81 1.02*** 0.85 x
Oil price 1.10 1.34 1.35 x
CPI Inflation 0.85 1.07 0.95 0.96*
Core CPI Inflation 0.83 1.30** 1.13* 0.91
UOM: Expected inflation 1.02 1.29 1.16 x
SPF: Expected CPI 0.86 1.33* 1.31** x

Note: This table shows the RMSEs relative to the random walk with drift. The MN-SOC-BVAR is a BVAR
with “Minnesota” and “Sum-of-coefficients” priors and was estimated using Giannone et al. (2015). The PLR-
BVAR is a BVAR with “long-run prior” as in Giannone et al. (2019). The UC-SV model was first proposed
in Stock and Watson (2007). We test that the forecasts of each other model are statistically different from
the trend-cycle model forecasts using Diebold and Mariano (1995) with a quadratic loss function and the
modification from Harvey et al. (1997). *p <0.1, **p<0.05, ***p<0.01.
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8 Concluding Comments

The paper proposes a medium size semi-structural model aimed at identifying and estim-

ating the key building blocks of inflation dynamics – the Phillips curve, long-term inflation

expectations, output gap and GDP trend, Okun’s law and a high frequency oil price cycle –

within a unified framework.

Results point to a well identified and steep Phillips curve relationship in reduced form,

which captures a cyclical component CPI inflation with maximum power at around eight

years periodicity but also point to deviations from the standard rational expectations formu-

lation since we identify a sizeable cycle in CPI inflation which is unrelated to real domestic

variables and captures the correlation between inflation expectations and oil prices. This

cycle, which is of slightly shorter periodicity than the business cycle and is more volatile,

points to a channel through which oil price developments temporarily affect consumer price

expectations away from the nominal-real relationship captured by the Phillips curve. In the

presence of large oil price shocks this component may dominate and cloud the signal on

cyclical inflation. The energy price component appears to be determined by global factors

such as oil supply shocks and financial shocks in the commodity markets.

Interestingly, this energy price cycle is associated to both core and CPI inflation which

suggests that even core inflation provides a clouded signal of fundamental (trend and cyclic-

ally driven) inflationary pressures. This result provides motivation to the signal extraction

approach we have proposed for the identifiation of the cyclical component of inflation. As

for the real variables, the model’s estimate of potential output identifies a slowdown around

the beginning of the millennium that becomes more evident in the wake of the Great Re-

cession. Our results are compatible with both the ‘productivity view’ of Hall et al. (2017)

and the ‘hysteresis view’ of Blanchard et al. (2015). The implication is that our estimate

of the output gap differs from that of the CBO’s since the beginning of the productivity

slow-down. While the CBO’s view is that the US economy was growing around potential

before the 2008 crisis and below it since then, our model points to growth above potential

between 2006 and 2008 and again since 2015.
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Although it is not possible to discriminate between these different views that ultimately

depend on different beliefs on the long-run behaviour of output, our model – based on

the joint analysis of output, labor market, prices and expectations – provides a plausible

narrative which is consistent with the data and that can be interpreted in a transparent

way. We believe that as such it provides a useful model-consistent benchmark for the policy

debate.

From the policy perspective, our findings indicate that the central bank can exploit the

Phillips curve trade-off but only in a limited way since the latter, although well identified, is

not the unique determinant of inflation dynamics. Indeed, some of the so-called puzzles of

inflation behaviour in the last decade can be explained by disentangling the Phillips curve

from the energy price cycle. Moreover, while trend inflation appears to be roughly stable from

2000 to 2010, the behaviour of UoM expectations shows large and persistent deviations from

the common trend (long-term inflation expectations) since 2004 which can be interpreted

as a bias in consumers’ expectations. Therefore, a problematic issue for the central bank is

that, facing volatile and persistent oil price dynamics, consumer expectations can deviate

from a stable trend and affect price dynamics. Our conclusions are therefore quite open-

ended. The Fed’s view that inflation is dominated by three components is supported by the

data. However, the ability of the Central Bank to anchor expectations is limited especially

because oil affects consumer expectations persistently and independently from the state of

the real economy.

References

Adam, Klaus and Mario Padula, “Inflation Dynamics And Subjective Expectations In
The United States,” Economic Inquiry, January 2011, 49 (1), 13–25.

An, Sungbae and Frank Schorfheide, “Bayesian Analysis of DSGE Models,” Economet-
ric Reviews, 2007, 26 (2-4), 113–172.

Atkeson, Andrew and Lee E. Ohanian, “Are Phillips curves useful for forecasting infla-
tion?,” Quarterly Review, 2001, (Win), 2–11.

Auer, Raphael A., Andrei A. Levchenko, and Philip Sauré, “International Inflation
Spillovers Through Input Linkages,” Working Papers 2017-03, Swiss National Bank 2017.

39



Auer, Raphael and Andreas M. Fischer, “The effect of low-wage import competition on
U.S. inflationary pressure,” Journal of Monetary Economics, May 2010, 57 (4), 491–503.

Baştürk, Nalan, Cem Çakmakli, S. Pinar Ceyhan, and Herman K. Van Dijk,
“Posterior-predictive evidence on US inflation using extended New-Keynesian Phillips
Curve Models with non-filtered data,” Journal of Applied Econometrics, 2014, 29 (7),
1164–1182.

Bai, Jushan and Peng Wang, “Identification and Bayesian estimation of dynamic factor
models,” Journal of Business & Economic Statistics, 2015, 33 (2), 221–240.

Ball, Laurence and Sandeep Mazumder, “Inflation Dynamics and the Great Recession,”
Brookings Papers on Economic Activity, 2011, 42 (1 (Spring), 337–405.

Basistha, Arabinda and Richard Startz, “Measuring the NAIRU with Reduced Uncer-
tainty: A Multiple-Indicator Common-Cycle Approach,” The Review of Economics and
Statistics, November 2008, 90 (4), 805–811.

Baumeister, Christiane and James D Hamilton, “Structural interpretation of vec-
tor autoregressions with incomplete identification: Revisiting the role of oil supply and
demand shocks,” American Economic Review, 2019, 109 (5), 1873–1910.

and Lutz Kilian, “Do oil price increases cause higher food prices?,” Economic Policy,
October 2014, 29 (80), 691–747.

and , “Lower Oil Prices and the U.S. Economy: Is This Time Different?,” Brookings
Papers on Economic Activity, 2016, 47 (2 (Fall)), 287–357.

Beveridge, Stephen and Charles R Nelson, “A new approach to decomposition of
economic time series into permanent and transitory components with particular attention
to measurement of the business cycle,” Journal of Monetary Economics, 1981, 7 (2), 151–
174.

Blanchard, Olivier, Eugenio Cerutti, and Lawrence H. Summers, “Inflation and
Activity: Two Explorations and Their Monetary Policy Implications,” Working Paper
Series WP15-19, Peterson Institute for International Economics November 2015.

Borio, Claudio E. V. and Andrew Filardo, “Globalisation and inflation: New cross-
country evidence on the global determinants of domestic inflation,” BIS Working Papers
227, Bank for International Settlements May 2007.

Borio, Claudio, Piti Disyatat, and Mikael Juselius, “Rethinking potential output:
embedding information about the financial cycle,” Oxford Economic Papers, 2017, 69 (3),
655–677.

Castelnuovo, Efrem, “Tracking U.S. inflation expectations with domestic and global indic-
ators,” Journal of International Money and Finance, November 2010, 29 (7), 1340–1356.

40



Cecchetti, Stephen G, Michael Feroli, Peter Hooper, Anil K Kashyap, and Ker-
mit Schoenholtz, “Deflating Inflation Expectations: The Implications of Inflation’s
Simple Dynamics,” CEPR Discussion Papers 11925, C.E.P.R. Discussion Papers March
2017.

Chiaie, Simona Delle, Laurent Ferrara, and Domenico Giannone, “Common factors
of commodity prices,” Research Bulletin, 2018, 51.

Ciccarelli, Matteo and Benoît Mojon, “Global Inflation,” The Review of Economics and
Statistics, 2010, 92 (3), 524–535.

Clark, Todd E. and Taeyoung Doh, “Evaluating alternative models of trend inflation,”
International Journal of Forecasting, 2014, 30 (3), 426–448.

Coibion, Olivier and Yuriy Gorodnichenko, “Is the Phillips Curve Alive and Well after
All? Inflation Expectations and the Missing Disinflation,” American Economic Journal:
Macroeconomics, January 2015, 7 (1), 197–232.

, , and Mauricio Ulate, “The Cyclical Sensitivity in Estimates of Potential Output,”
Brookings Papers on Economic Activity, 2018, 49 (2 (Fall)), 343–441.

, , and Rupal Kamdar, “The Formation of Expectations, Inflation and the Phillips
Curve,” NBER Working Papers 23304, National Bureau of Economic Research, Inc March
2017.

Cuba-Borda, Pablo, Alexander Mechanick, and Andrea Raffo, “Monitoring the
World Economy : A Global Conditions Index,” IFDP Notes 2018-06-15, Board of Gov-
ernors of the Federal Reserve System (U.S.) June 2018.

Del Negro, Marco, Domenico Giannone, Marc P. Giannoni, and Andrea Tam-
balotti, “Safety, Liquidity, and the Natural Rate of Interest,” Brookings Papers on Eco-
nomic Activity, 2017, 48 (1 (Spring), 235–316.

Diebold, Francis X. and Roberto S. Mariano, “Comparing Predictive Accuracy,”
Journal of Business & Economic Statistics, 1995, 13 (3), 253–263.

Dotsey, Michael, Robert G. King, and Alexander L. Wolman, “State-Dependent
Pricing and the General Equilibrium Dynamics of Money and Output,” The Quarterly
Journal of Economics, 1999, 114 (2), 655–690.

, Shigeru Fujita, and Tom Stark, “Do Phillips curves conditionally help to forecast
inflation?,” Working Papers 11-40, Federal Reserve Bank of Philadelphia 2011.

Erceg, Christopher J. and Andrew T. Levin, “Imperfect credibility and inflation per-
sistence,” Journal of Monetary Economics, May 2003, 50 (4), 915–944.

Forbes, Kristin, Ida Hjortsoe, and Tsvetelina Nenova, “Shocks versus structure:
explaining differences in exchange rate pass-through across countries and time,” Discussion
Papers 50, Monetary Policy Committee Unit, Bank of England July 2017.

41



, Lewis Kirkham, and Konstantinos Theodoridis, “A Trendy Approach to UK
Inflation Dynamics,” CEPR Discussion Papers 12652, C.E.P.R. Discussion Papers January
2018.

Galí, Jordi, “Commentary: Inflation Pressures and Monetary Policy in a Global Economy,”
International Journal of Central Banking, March 2010, 6 (1), 93–102.

and Mark Gertler, “Inflation dynamics: A structural econometric analysis,” Journal
of Monetary Economics, October 1999, 44 (2), 195–222.

Giannone, Domenico, Michele Lenza, and Giorgio E Primiceri, “Prior selection for
vector autoregressions,” Review of Economics and Statistics, 2015, 97 (2), 436–451.

, , and Giorgio E. Primiceri, “Priors for the Long Run,” Journal of the American
Statistical Association, 2019, 114 (526), 565–580.

Gordon, Robert, “US Inflation, Labor’s Share, and the Natural Rate of Unemployment,”
in Heinz Konig, ed., Economics of Wage Determination, New York: Springer-Verlag, 09
1990, pp. 1–34.

, “The History of the Phillips Curve: Consensus and Bifurcation,” Economica, 2011, 78
(309), 10–50.

Gordon, Robert J., “Inflation, Flexible Exchange Rates, and the Natural Rate of Unem-
ployment,” in Martin Neil Baily, ed., Workers, Jobs, and Inflation, Brookings Institution,
1982.

Grant, Angelia L. and Joshua C.C. Chan, “A Bayesian Model Comparison for Trend-
Cycle Decompositions of Output,” Journal of Money, Credit and Banking, 2017, 49 (2-3),
525–552.

Hall, Robert, Mark Watson, James Stock, and John Fernald, “The Slow Recovery
in Output after 2009,” 2017 Meeting Papers 610, Society for Economic Dynamics 2017.

Hamilton, James D., “Oil prices, exhaustible resources and economic growth,” in “Hand-
book on Energy and Climate Change” Chapters, Edward Elgar Publishing, 2013, chapter 1,
pp. 29–63.

Harvey, Andrew C, “Trends and cycles in macroeconomic time series,” Journal of Business
& Economic Statistics, 1985, 3 (3), 216–227.

, Forecasting, structural time series models and the Kalman filter, Cambridge university
press, 1990.

, Thomas M Trimbur, and Herman K Van Dijk, “Trends and cycles in economic
time series: A Bayesian approach,” Journal of Econometrics, 2007, 140 (2), 618–649.

Harvey, David, Stephen Leybourne, and Paul Newbold, “Testing the equality of
prediction mean squared errors,” International Journal of Forecasting, 1997, 13 (2), 281 –
291.

42



Henry, S. G. B and A. R. Pagan, “The Econometrics of the New Keynesian Policy
Model: Introduction,” Oxford Bulletin of Economics and Statistics, 2004, 66, 581–607.

IMF, The Dog That Didn’t Bark: Has Inflation Been Muzzled or Was It Just Sleeping,
International Monetary Fund, April 2013.

Kilian, Lutz, “Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply
Shocks in the Crude Oil Market,” American Economic Review, June 2009, 99 (3), 1053–
69.

and Robert J. Vigfusson, “The Role of Oil Price Shocks in Causing U.S. Recessions,”
Journal of Money, Credit and Banking, December 2017, 49 (8), 1747–1776.

Kuttner, Kenneth N, “Estimating Potential Output as a Latent Variable,” Journal of
Business & Economic Statistics, July 1994, 12 (3), 361–368.

Lenza, Michele and Marek Jarociński, “An inflation-predicting measure of the output
gap in the euro area,” Working Paper Series 1966, European Central Bank September
2016.

Mavroeidis, Sophocles, Mikkel Plagborg-Møller, and James H. Stock, “Empirical
Evidence on Inflation Expectations in the New Keynesian Phillips Curve,” Journal of
Economic Literature, March 2014, 52 (1), 124–88.

McLeay, Michael and Silvana Tenreyro, “Optimal Inflation and the Identification of the
Phillips Curve,” Discussion Papers 1815, Centre for Macroeconomics (CFM) April 2018.

Mertens, Elmar, “Measuring the Level and Uncertainty of Trend Inflation,” The Review
of Economics and Statistics, December 2016, 98 (5), 950–967.

and James M. Nason, “Inflation and professional forecast dynamics: An evaluation
of stickiness, persistence, and volatility,” CAMA Working Papers 2017-60, Centre for Ap-
plied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National
University September 2017.

Milani, Fabio, “Expectations, learning and macroeconomic persistence,” Journal of Mon-
etary Economics, October 2007, 54 (7), 2065–2082.

Mumtaz, Haroon, Saverio Simonelli, and Paolo Surico, “International Comovements,
Business Cycle and Inflation: a Historical Perspective,” Review of Economic Dynamics,
January 2011, 14 (1), 176–198.

Nakamura, Emi and Jón Steinsson, “Price Rigidity: Microeconomic Evidence and Mac-
roeconomic Implications,” Annual Review of Economics, 05 2013, 5 (1), 133–163.

Nason, James M. and Gregor W. Smith, “Identifying the New Keynesian Phillips
curve,” Journal of Applied Econometrics, 2008, 23 (5), 525–551.

43



Ólafsson, Thorvardur Tjörvi, “The New Keynesian Phillips Curve: In Search of Improve-
ments and Adaptation to the Open Economy,” Economics 31, Department of Economics,
Central bank of Iceland September 2006.

Phillips, A. W., “The Relation Between Unemployment and the Rate of Change of Money
Wage Rates in the United Kingdom, 1861?19571,” Economica, 1958, 25 (100), 283–299.

Planas, Christophe, Alessandro Rossi, and Gabriele Fiorentini, “Bayesian Analysis
of the Output Gap,” Journal of Business & Economic Statistics, 2008, 26 (1), 18–32.

Rudd, Jeremy and Karl Whelan, “Modeling Inflation Dynamics: A Critical Review of
Recent Research,” Journal of Money, Credit and Banking, 2007, 39, 155–170.

Sims, Christopher A., “Using a likelihood perspective to sharpen econometric discourse:
Three examples,” Journal of Econometrics, April 2000, 95 (2), 443–462.

, “Inflation expectations, uncertainty, the Phillips curve, and monetary policy,” Conference
Series ; [Proceedings], 2008, 53.

Stock, James H and Mark W Watson, “Why has US inflation become harder to fore-
cast?,” Journal of Money, Credit and banking, 2007, 39 (s1), 3–33.

Stock, James H. and Mark W. Watson, “Phillips Curve Inflation Forecasts,” in Jeff
Fuhrer, Yolanda K. Kodrzycki, Jane Sneddon Little and Giovanni P. Olivei, ed., Under-
standing Inflation and the Implications for Monetary Policy. A Phillips Curve Retrospect-
ive, MIT Press, 2009, pp. 99–202.

Tsoukis, Christopher, George Kapetanios, and Joseph Pearlman, “Elusive Per-
sistence: Wage And Price Rigidities, The New Keynesian Phillips Curve And Inflation
Dynamics,” Journal of Economic Surveys, 09 2011, 25 (4), 737–768.

Yellen, Janet L., “Inflation Dynamics and Monetary Policy: A speech at the Philip
Gamble Memorial Lecture, University of Massachusetts, Amherst, Amherst, Massachu-
setts, September 24, 2015,” Speech 863, Board of Governors of the Federal Reserve System
(U.S.) 2015.

, “Macroeconomic Research After the Crisis,” October 2016. Speech by Chair Janet L.
Yellen at "The Elusive ‘Great’ Recovery: Causes and Implications for Future Business
Cycle Dynamics" 60th annual economic conference sponsored by the Federal Reserve Bank
of Boston, Boston, Massachusetts.

44


	A Stylised Model for Inflation Dynamics
	An Empirical Trend-Cycle Model
	Bringing the Model to the Data
	Trends and Cycles in the US Economy
	Trend Inflation, Equilibrium Unemployment, GDP Potential
	Business and Energy Price Cycles
	Historical Decomposition
	The Role of Oil
	The Output Gap and a Narrative of the Great Recession

	Global Factors in US Inflation
	Model Forecasting Performance
	Concluding Comments

